Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Environ Pollut ; 346: 123535, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365080

RESUMO

With the development of world industrialization, the environmental pollution of hexavalent chromium [Cr(VI)] is becoming an increasingly serious problem. In particular, the mechanisms by which long-term and low-dose exposure to Cr(VI) leading the development of related cancers are not well understood. As senescent cells gradually lose their ability to proliferate and divide, they will not be malignantly transformed. However, Senescence-associated secretory phenotype (SASP) released by senescent cells into the cellular microenvironment can act on neighboring cells. Since SASP has a bidirectional regulatory role in the malignant transformation of cells. Hence, It is very necessary to identified the composition and function of SASP which secreted by Cr(VI) induced senescent L02 hepatocytes (S-L02). Exosomes, a vesicle-like substances released extracellularly after the fusion of intracellular multivesicular bodies with cell membrane, are important components of SASP and contain a large number of microRNAs (miRNAs). By establishing Cr(VI)-induced S-L02 model, we collected the exosomes from the supernatants of S-L02 and L02 culture medium respectively, and screened out the highly expressed miRNAs in the exosomes of S-L02, namely the new SASP components. Among them, the increase of miR-222-5p was the most significant. It was validated that as SASP, miR-222-5p can inhibit the proliferation of L02 and S-L02 hepatocytes and at the same time accelerate the proliferation and migration ability of HCC cells. Further mechanistic studies revealed that miR-222-5p attenuated the regulatory effect of protein phosphatase 2A subunit B isoform R2-α (PPP2R2A) on Akt via repressing its target gene PPP2R2A, causing reduced expressions of forkhead box O3 (FOXO3a), p27 and p21, and finally increasing the proliferation of HCC cells after diminishing the negative regulation of on cell cycle. This study certainly provides valuable laboratory evidence as well as potential therapeutic targets for the prevention and further personalized treatment of Cr(VI)-associated cancers.


Assuntos
Carcinoma Hepatocelular , Cromo , Exossomos , Neoplasias Hepáticas , MicroRNAs , Humanos , Exossomos/metabolismo , Hepatócitos , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral
2.
Biomark Res ; 12(1): 21, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321558

RESUMO

Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.

3.
Cell Death Discov ; 10(1): 67, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331879

RESUMO

The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.

4.
J Transl Med ; 22(1): 216, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424632

RESUMO

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription­quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Ligases/genética , Ligases/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
5.
Environ Sci Pollut Res Int ; 31(8): 11490-11506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198081

RESUMO

With the complete promotion of a green, low-carbon, safe, and efficient economic system as well as energy system, the promotion of clean governance technology in the field of environmental governance becomes increasingly vital. Because of its low energy consumption, great efficiency, and lack of secondary pollutants, three-dimensional (3D) electrode technology is acknowledged as an environmentally beneficial and sustainable way to managing clean surroundings. The particle electrode is an essential feature of the 3D electrode reactor. This study provides an in-depth examination of the most current advancements in 3D electrode technology. The significance of 3D electrode technology is emphasized, with an emphasis on its use in a variety of sectors. Furthermore, the particle electrode synthesis approach and mechanism are summarized, providing vital insights into the actual implementation of this technology. Furthermore, by a metrological examination of the research literature in this sector, the paper expounds on the potential and obstacles in the development and popularization of future technology.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , Carbono , Eletrodos , Tecnologia
6.
J Gene Med ; 26(1): e3606, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282157

RESUMO

BACKGROUND: Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers. METHODS: ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation. RESULTS: WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS. CONCLUSIONS: ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.


Assuntos
Neoplasias Ovarianas , Telômero , Humanos , Feminino , Telômero/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Algoritmos , Axitinibe , Biomarcadores , Microambiente Tumoral/genética
7.
Int Immunopharmacol ; 127: 111376, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38113691

RESUMO

BACKGROUND AND AIMS: RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS: Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS: SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS: SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Environ Toxicol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095090

RESUMO

Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.

9.
Front Immunol ; 14: 1301577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143756

RESUMO

Background: Guillain-Barre syndrome (GBS) is an immune-mediated inflammatory peripheral neuropathy. This study aimed to conduct a systematic analysis of the serum lipids profile in GBS. Methods: We measured the serum lipids profile in 85 GBS patients and compared it with that of 85 healthy controls matched for age and sex. Additionally, we analyzed the correlation between lipids and the severity, subtypes, precursor infections, clinical outcomes, clinical symptoms, immunotherapy, and other laboratory markers of GBS. Results: Compared to the healthy controls, GBS exhibited significantly elevated levels of Apolipoprotein B (APOB), Apolipoprotein C2 (APOC2), Apolipoprotein C3 (APOC3), Apolipoprotein E (APOE), triglycerides (TG), and residual cholesterol (RC). Conversely, Apolipoprotein A1 (APOA1), Apolipoprotein A2 (APOA2), and high-density lipoprotein (HDL) were substantially lower in GBS. Severe GBS displayed noticeably higher levels of APOC3 and total cholesterol (TC) compared to those with mild disease. Regarding different clinical outcomes, readmitted GBS demonstrated higher RC expression than those who were not readmitted. Moreover, GBS who tested positive for neuro-virus antibody IGG in cerebrospinal fluid (CSF) exhibited heightened expression of APOC3 in comparison to those who tested negative. GBS with cranial nerve damage showed significantly reduced expression of HDL and APOA1 than those without such damage. Additionally, GBS experiencing limb pain demonstrated markedly decreased HDL expression. Patients showed a significant reduction in TC after intravenous immunoglobulin therapy. We observed a significant positive correlation between lipids and inflammatory markers, including TNF-α, IL-1ß, erythrocyte sedimentation rate (ESR), white blood cells, monocytes, and neutrophils in GBS. Notably, APOA1 exhibited a negative correlation with ESR. Furthermore, our findings suggest a potential association between lipids and the immune status of GBS. Conclusion: The research demonstrated a strong connection between lipids and the severity, subtypes, clinical outcomes, precursor infections, clinical symptoms, immunotherapy, inflammation, and immune status of GBS. This implies that a low-fat diet or the use of lipid-lowering medications may potentially serve as an approach for managing GBS, offering a fresh viewpoint for clinical treatment of this condition.


Assuntos
Síndrome de Guillain-Barré , Humanos , Síndrome de Guillain-Barré/terapia , Lipídeos , Triglicerídeos , Colesterol , Apolipoproteínas B
10.
Fish Shellfish Immunol ; 142: 109173, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879512

RESUMO

This study aimed to investigate the effects of dietary melatonin (MT) levels on the antioxidant capacity, immunomodulatory, and transcriptional regulation of red swamp crayfish. Six experimental diets with different levels of MT (0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg diet) were fed to juvenile crayfish for 60 d. The transcriptome data of the control group and the group supplemented with dietary MT at 165.1 mg/kg were obtained using RNA-seq. In total, 3653 differentially expressed genes (2082 up-regulated and 1571 down-regulated) were identified. Pathways and genes related to antioxidant immune and growth performance were verified by qRT-PCR. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (165.1 mg/kg) group compared to the control group. Analysis of antioxidant immune-related enzymes in the hepatopancreas demonstrated that dietary MT (165.1 mg/kg) significantly increased activities of catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase and significantly decreased aspartate aminotransferase and alanine aminotransferase activity. At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immune and development, which included toll-like receptors, Crustin, C-type lectin, and so on. To conclude, MT could be used as a supplement in crayfish feed to increase immunity and antioxidant capacity and according to the broken line regression, the ideal MT concentration was the 159.02 mg/kg. Overall, this study demonstrates the role of melatonin in the antioxidant responses and immunomodulatory of Procambarus clarkii, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.


Assuntos
Antioxidantes , Melatonina , Animais , Antioxidantes/metabolismo , Astacoidea , Melatonina/farmacologia , Melatonina/metabolismo , Transcriptoma , Imunidade Inata/genética , Dieta/veterinária
11.
Artigo em Inglês | MEDLINE | ID: mdl-37804799

RESUMO

Melatonin (MT) is regarded as an antioxidant and immunostimulant that can efficiently scavenge free radicals and activate antioxidant enzymes. The aim of this study was to investigate the effects of dietary MT on the growth performance and immune function of the Pacific white shrimp (Litopenaeus vannamei). Six groups of L. vannamei were supplemented with dietary MT at 0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg levels for 2 months. RNA-Seq analysis was performed to obtain transcriptome data of the control group and the group supplemented with dietary MT at 82.7 mg/kg BW. In total, 1220 DEGs (799 up-regulated and 421 down-regulated) were identified. Pathways and genes related to growth performance and immune function were verified by real-time quantitative polymerase chain reaction. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (82.7 mg/kg BW) group as compared to the control group. Analysis of antioxidant-related enzymes in the hepatopancreas showed that dietary MT (82.7 mg/kg BW) significantly increased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, while dietary MT at 41.2 mg/kg BW significantly increased activities of glutathione S-transferase, lysozyme (LZM), and phenoloxidase (PO). At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immunity and growth, which included PO, SOD, LZM, GPx, chitin synthase, ecdysone receptor, calcium-calmodulin dependent protein kinase I, and retinoid X receptor. In conclusion, dietary MT may improve the growth performance and immune function of L. vannamei to some extent.


Assuntos
Melatonina , Penaeidae , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Transcriptoma , Dieta , Superóxido Dismutase/metabolismo , Fagocitose , Penaeidae/genética , Imunidade Inata , Ração Animal/análise
12.
PLoS One ; 18(9): e0290957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656741

RESUMO

In recent years, virtual reality training technology (VRTT) has been considered by many scholars as a new training method instead of traditional training (TT) to reduce unsafe behaviors ascribed to construction workers (CWs) and corporate accident rates. However, in this process, a conflict of interest arises among the government, construction enterprises (CEs), and CWs. Therefore, this study introduces a quantitative research method, the three-party evolutionary game and creatively combining them with the product life cycle (PLC) to solve this problem by analyzing the equilibrium and evolutionarily stable strategies of the system. Finally, collaborative players' decision-making behaviors and their sensitivity to critical factors are examined. This paper will illustrate these in each stage through numerical simulations. The results of the study indicate that the government plays a dominant role in the VRTT introduction stage. When the government gives CEs appropriate subsidies, CEs will eventually realize the importance of VRTT for CWs. Then the government will gradually reduce the amount of the subsidies in this process. In addition, we also find that the continually high cost will lead to negative policies by the government, which requires the active cooperation and attitude change from CEs and CWs. Ultimately, the government, CEs and CWs adopt the best strategy in the evolutionary process to facilitate the promotion, application and sustainability of VRTT in the construction industry.


Assuntos
Indústria da Construção , Realidade Virtual , Humanos , Desenvolvimento Sustentável , Evolução Biológica , Tecnologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-37673375

RESUMO

Triclocarban (TCC) is commonly used in household, personal care and industrial products and has been frequently detected in different aquatic ecosystems. Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with antioxidant and anti-inflammatory properties. The present study aimed to investigate the hepatotoxic effects of TCC in aquatic organisms and explore the protective roles of Mul. Herein, we found that exposure to TCC at environmentally realistic concentrations (5 µg/L) could impair liver function, along with impaired antioxidant defense and infiltration of inflammatory cells. Additionally, we found that TCC increased the ratio of TUNEL staining positive cells, accompanied by upregulation of pro-apoptotic protein (Bax, caspase3 and caspase9), and downregulation of anti-apoptotic proteins (Bcl2). In contrast, Mul supplementation reversed the hepatic pathological damage, ROS elevation, and apoptosis induced by TCC, likely due to hyperactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Additionally, Mul supplementation suppressed the mRNA levels of proinflammatory factors (TNF-α, IL-1ß, IFN-γ, IL-6 and IL-8) and enhanced the mRNA levels of anti-inflammatory factors (TGFß1, TGFß2, IL4, IL10 and IL11) in the liver of carp. We also discovered that Mul supplementation suppressed TCC-induced nuclear nuclear factor κB (NF-κB) elevation. In conclusion, Mul enhances Nrf2 signaling cascades and counteracts the NF-κB inflammatory program to rescue hepatotoxicity induced by TCC, providing new insights into the hepatotoxic effects of TCC and potential protection strategies for heart injury induced by TCC.


Assuntos
Carpas , NF-kappa B , Animais , NF-kappa B/genética , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Ecossistema , Fator 2 Relacionado a NF-E2/genética , Fígado , Inflamação/induzido quimicamente , Apoptose
14.
Food Chem Toxicol ; 180: 114002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634612

RESUMO

Ubiquitous microplastics have become a threat to animal and human health, due to their potential toxicity, persistent nature and consequent bioaccumulation. Supporting evidence elucidates that polystyrene nanoplastics (PS-NPs) can destroy blood-testis barrier integrity, thus causing testicular hypoplasia and impairment of spermatogenesis. Nevertheless, how PS-NPs modulate macrophage polarization-energy metabolism crosstalk has not been fully investigated in testicular tissue. Here, we observed that polystyrene PS-NPs exposure contributes to severe vacuolization in the seminiferous tubules, accompanied by apoptosis of testicular tissue and infiltration of M1 macrophages. Meanwhile, we found that PS-NPs could trigger the M1 polarization phenotype, which activated ROS-macrophage migration inhibitory factor (MIF)/NF-κB signaling that in turn induced apoptosis of GC2 cells in the GC2-macrophage cell coculture model. Simultaneously, we confirmed that PS-NPs exposure increased 3-phospho-D-glycerate, phosphoenolpyruvate and lactate concentrations, accompanied by decreased pyruvate and adenosine triphosphate (ATP) production, likely due to downregulated pyruvate kinase M2 (PKM2) dimer expression. In conclusion, the mechanism of PS-NPs-induced testicular inflammation can be mediated by promoting the infiltration of M1 macrophages, thereby resulting in an ROS burst and subsequent induction of energy metabolism disorders. The current study will provide new insights into PS-NPs-induced male reproductive toxicity and highlight the context-specific roles of testicular macrophages.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Humanos , Masculino , Microplásticos , Poliestirenos/toxicidade , Plásticos , Espécies Reativas de Oxigênio , Macrófagos , Metabolismo Energético , Inflamação/induzido quimicamente
15.
Environ Sci Pollut Res Int ; 30(37): 87830-87850, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37434054

RESUMO

Fe-BOC-X photocatalyst was successfully prepared by solvothermal method. The photocatalytic activity of Fe-BOC-X was determined by ciprofloxacin (CIP), a typical fluoroquinolone antibiotic. Under sunlight irradiation, all Fe-BOC-X showed better CIP removal performance than original BiOCl. In comparison, the photocatalyst with iron content of 50 wt% (Fe-BOC-3) has excellent structural stability and the best adsorption photodegradation efficiency. The removal rate of CIP (10 mg/L) by Fe-BOC-3 (0.6 g/L) reached 81.4% within 90 min. At the same time, the effects of photocatalyst dosage, pH, persulfate, persulfate concentration, and combinations of different systems (PS, Fe-BOC-3, Vis/PS, Vis/Fe-BOC-3, Fe-BOC-3/PS, and Vis/Fe-BOC-3/PS) on the reaction were systematically discussed. In reactive species trapping experiments, electron spin resonance (ESR) signals revealed that the photogenerated holes (h+), hydroxyl radical (•OH), sulfate radical (•SO4-), and superoxide radical (•O2-) played an important role in CIP degradation; hydroxyl radicals (•OH) and sulfate radicals (•SO4-) play a major role. Various characterization methods have demonstrated that Fe-BOC-X has larger specific surface area and pore volume than original BiOCl. UV-vis DRS indicate that Fe-BOC-X has wider visible light absorption and faster photocarrier transfer and provides abundant surface oxygen absorption sites for effective molecular oxygen activation. Accordingly, a large number of active species were produced and participated in the photocatalytic process, thus effectively promoting the degradation of ciprofloxacin. Based on HPLC-MS analysis, two possible decomposition pathways of CIP were finally proposed. The main degradation pathways of CIP are mainly due to the high electron density of piperazine ring in CIP molecule, which is mainly attacked by various free radicals. The main reactions include piperazine ring opening, decarbonylation, decarboxylation, and fluorine substitution. This study can better open up a new way for the design of visible light driven photocatalyst and provide more ideas for the removal of CIP in water environment.


Assuntos
Ciprofloxacina , Compostos Férricos , Ciprofloxacina/química , Luz , Oxigênio , Piperazinas , Catálise
16.
Artigo em Inglês | MEDLINE | ID: mdl-37269917

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are a group of anthropogenic chemicals widely used in commodities and industrial products, posing a potential threat to aquatic organisms. However, limited data are available on the toxicity effects of BUVSs in the liver, and no data are available on effective therapeutic strategies. In this study, we exployed aimed to explore the hepatotoxicity of 2-(benzotriazol-2-yl)-4,6-bis(2-phenylpropan-2-yl)phenol (UV-234) and reveal the preventive function of Genistein. At first, yellow catfish (Pelteobagrus fulvidraco) exposed to UV-234 (10 µg/L) showed up-regulated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) and hepatic reactive oxygen species (ROS) overproduction, along with significantly reduced activities of antioxidants enzymes and nuclear factor erythroid-derived 2-related factor 2 (Nrf2) basal levels. In contrast, 100 mg/kg diet of Genistein improve the hepatic antioxidative capability of fish via activating Nrf2 pathway. Furthermore, we confirmed that UV-234 exposure could induce nuclear factor-κB (NF-κB)-driven inflammatory response, as evidenced by the hepatic inflammatory cells infiltration, lower levels of plasma complement C3 (C3) and complement C4 (C4) as well as higher mRNA levels of NF-κB and inflammatory cytokines. Conversely, feeding UV-234-exposed fish on Genistein-supplemented diets attenuated above adverse effects. Meanwhile, we confirmed that Genistein supplement protected liver apoptosis induced by UV-234 via suppressing up-regulated expression levels of pro-apoptotic genes (Bax, caspase3). In summary, our findings revealed that Genistein positively regulates the Nrf2-mediated antioxidant defenses and reduce NF-κB-driven inflammatory response, thus indirectly inhibiting hepatic damage induced by UV-234 in yellow catfish (Pelteobagrus fulvidraco).


Assuntos
Peixes-Gato , Doença Hepática Induzida por Substâncias e Drogas , Animais , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Genisteína/farmacologia , Genisteína/metabolismo , Peixes-Gato/metabolismo , Fígado/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
17.
J Hazard Mater ; 457: 131755, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276693

RESUMO

NO2 has been known to impair immunity and exacerbate susceptibility to infectious diseases. However, scant notice has been taken of the effect of NO2 on neutrophils. Neutrophil extracellular traps (NETs) formation is necessary for NETosis development by neutrophils as an immune system against pathogens. By analyzing the morphology and signature components of NETs, we focused for the first time on finding that 10 ppm of NO2 exposure for 15 consecutive days can hinder the formation of NETs. Next, we used NO2 in vivo derivatives to probe the mechanism for NETs formation in vitro. Our findings showed that NO2 suppression of respiratory burst levels and mitogen-activated protein kinase (MAPK)/Phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling was related to NO2 reduction in NETs formation. Inhibition of phorbol myristate acetate (PMA)-induced NETs formation by NO2 hindered autophagy, as evidenced by increased mTOR protein expression, decreased LC3 protein expression, and reduced autophagic vesicles. By activating mTOR-mediated autophagy, rapamycin (Rapa) reduced the inhibition of PMA-induced NETs by NO2. This study will provide valuable insights into the mechanisms of immunotoxicity of NO2, new insights into the etiology of diseases linked to NETs formation, and a theoretical basis for protection against such illnesses.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Animais , Ratos , Dióxido de Nitrogênio , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia , Espécies Reativas de Oxigênio/metabolismo
18.
Fish Shellfish Immunol ; 139: 108906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348686

RESUMO

Synthetic phenolic antioxidants (SPAs) are an environmental concern due to their persistence nature and bioaccumulation. However, the hepatoxicity and mechanisms of SPAs in aquatic organisms remain poorly understood. In this study, grass carp were exposed to two representative SPAs (BHA and BHT) at environmentally relevant levels (0.1 µM) for 30 days. We observed that BHA and BHT exposure significantly increased the levels of serum aminotransferase (ALT) and aspartate aminotransferase (AST) in grass carp, accompanied by mild inflammatory cell infiltration and irregularity in the shape of hepatocytes. Dihydro ethylenediamine staining showed that BHA and BHT exposure resulted in elevated levels of superoxide levels, accompanied by increased antioxidant enzyme activities (T-AOC, SOD, CAT, GSH-PX) and MDA levels, which is suggestive of oxidative stress responses in the liver of grass carp. Besides, BHA and BHT could dock into the pocket of phosphatidylinositol 3-kinases (PI3K) and thereby inhibiting PI3K/mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling cascades. Meanwhile, our results clarified that BHA and BHT could promote autophagosome production and increase the expression of key autophagy proteins, likely due to inhibition of PI3K/mTOR/AKT signaling pathway. Moreover, BHA and BHT could induce apoptotic process by upregulating the expression of Bax, Caspase3 and Caspase8 and downregulating Bcl2 expression. Notably, BHT exhibited more hepatoxicity on the indicators of the apoptosis and oxidative stress than BHA. In summary, our findings demonstrated that BHA and BHT exposure could induce liver damage induced via regulating ROS/PI3K-mediated autophagic hyperactivation, which is a crucial step in triggering hepatocyte death. This study provides novel insight into the potential mechanisms underlying liver damage caused by BHA and BHT in aquatic organisms, and offers a new theoretical basis for ecological risk assessment of SPAs.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sirolimo , Carpas/metabolismo , Fenóis , Apoptose , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
19.
Fish Shellfish Immunol ; 139: 108897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301309

RESUMO

Aquatic ecosystems are being more contaminated with polyhalogenated carbazoles (PHCZs), which raising concerns about their impact on aquatic organisms. Lycopene (LYC) exhibits several beneficial properties for fish via enhance antioxidant defenses and improve immunity. In this study, we attempted to investigate the hepatotoxic effects of typical PHCZs 3, 6-dichlorocarbazole (3,6-DCCZ) and the protective mechanisms of LYC. In this study, we found that yellow catfish (Pelteobagrus fulvidraco) exposure to 3,6-DCCZ (1.2 mg/L) resulted in hepatic inflammatory infiltration and disordered hepatocyte arrangement. Besides, we observed that 3,6-DCCZ exposure resulted in hepatic reactive oxygen species (ROS) overproduction and excessive autophagosome accumulation, accompanied with inhibition of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway. Subsequently, we confirmed that 3,6-DCCZ exposure triggered hepatic uncontrolled inflammatory response via activation of nuclear factor-κB (NF-κB) pathway, along with decreased plasma complement C3 (C3) and complement C4 (C4) levels. Meanwhile, yellow catfish exposed to 3,6-DCCZ exhibit an increased hepatic apoptosis phenomenon, as evidenced by the elevated number of positive TUNEL cells and upregulated expression of caspase3 and cytochrome C (CytC). In contrast, LYC treatment could alleviate the 3,6-DCCZ-induced pathological changes, hepatic ROS accumulation, autophagy, inflammatory response and apoptosis. To sum up, this study provided the demonstration that LYC exerts hepatoprotective effects to alleviate 3,6-DCCZ-induced liver damage by inihibiting ROS/PI3K-AKT/NF-κB signaling in yellow catfish.


Assuntos
Peixes-Gato , NF-kappa B , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Licopeno/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Peixes-Gato/metabolismo , Carbazóis/metabolismo , Carbazóis/farmacologia , Ecossistema , Fígado/metabolismo
20.
J Adv Res ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169220

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) is a systemic autoimmune disease with limited treatment success, characterized by chronic inflammation and progressive cartilage and bone destruction. Accumulating evidence has shown that neutrophil extracellular traps (NETs) released by activated neutrophils are important for initiating and perpetuating synovial inflammation and thereby could be a promising therapeutic target for RA. K/B × N serum transfer-induced arthritis (STIA) is a rapidly developed joint inflammatory model that somehow mimics the inflammatory response in patients with RA. Human gingival-derived mesenchymal stem cells (GMSCs) have been previously shown to possess immunosuppressive effects in arthritis and humanized animal models. However, it is unknown whether GMSCs can manage neutrophils in autoimmune arthritis. OBJECTIVES: To evaluate whether infusion of GMSCs can alleviate RA by regulating neutrophils and NETs formation. If this is so, we will explore the underlying mechanism(s) in an animal model of inflammatory arthritis. METHODS: The effects of GMSCs on RA were assessed by comparing the symptoms of the K/B × N serum transfer-induced arthritis (STIA) model administered either with GMSCs or with control cells. Phenotypes examined included clinical scores, rear ankle thickness, paw swelling, inflammation, synovial cell proliferation, and immune cell frequency. The regulation of GMSCs on NETs was examined through immunofluorescence and immunoblotting in GMSCs-infused STIA mice and in an in vitro co-culture system of neutrophils with GMSCs. The molecular mechanism(s) by which GMSCs regulate NETs was explored both in vitro and in vivo by silencing experiments. RESULTS: We found in this study that adoptive transfer of GMSCs into STIA mice significantly ameliorated experimental arthritis and reduced neutrophil infiltration and NET formation. In vitro studies also showed that GMSCs inhibited the generation of NETs in neutrophils. Subsequent investigations revealed that GMSCs secreted prostaglandin E2 (PGE2) to activate protein kinase A (PKA), which ultimately inhibited the downstream extracellular signal-regulated kinase (ERK) pathway that is essential for NET formation. CONCLUSION: Our results demonstrate that infusion of GMSCs can ameliorate inflammatory arthritis mainly by suppressing NET formation via the PGE2-PKA-ERK signaling pathway. These findings further support the notion that the manipulation of GMSCs is a promising stem cell-based therapy for patients with RA and other autoimmune and inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...